手机浏览器扫描二维码访问
1、将特征重要程度排序的过程与模型构建过程同时进行的特征选择方法称作嵌入式特征选择方法(√)2、线性回归模型的目标函数为残差平方和最大化(残差平方和最小化)3、特征向量中心度度量节点在网络中的影响力。网络中每个节点被赋予一个影响力分数,一个节点与更多的高分节点相连,其分数也趋向于更高。(√)4、强化学习使用已标记的数据,根据延迟奖励学习策略。(未标记的数据,通过与环境的交互来收集数据进行学习)5、过拟合是机器学习中一个重要概念,是指模型过于复杂,导致对测试数据预测很好,但对训练数据预测很差。(对训练数据预测很好,对测试数据预测很差)三、分析题(本题满分30分,共含5道小题,每小题6分)1、现有样本如下:0,2,3,4,5,6,7,8,9,10,41,42,43,44,45,46,47,48,49,50。使用等距离散化来处理该样本,将样本分为5个区间段。有几个区间内样本容量不为0?你的答案:2你的计算过程:首先,计算样本的最小值和最大值:最小值:0最大值:50然后,确定分为5个区间时的间距:(最大值-最小值)区间数=(50-0)5=10接下来,以间距为10进行等距离散化:区间1:0-9(共10个样本)区间2:10-19(无样本)区间3:20-29(无样本)区间4:30-39(无样本)区间5:40-50(共11个样本)根据以上结果,有2个区间段(区间2和区间3)内的样本容量不为0。请注意,这种等距离散化方式可能导致某些区间没有样本,而其他区间样本较多。2、随机森林采用的是什么集成方法?(A.Bagging,B.Boosting,C.Stag)。这种集成方法适用于什么情况?你的选择:bagging你的解释:Bagging(自举汇聚法)适用于以下情况:训练数据较少,需要尽可能充分利用现有的有限样本。数据集存在较强的噪声或离群点,需要通过多个模型的平均来减小噪声影响。需要降低模型的方差,提高模型的稳定性和鲁棒性。模型复杂度较高,容易过拟合,需要引入随机性增加泛化能力。Bagging通过对原始训练集进行有放回的抽样,构建多个子模型。每个子模型相互独立地训练,并通过取平均值(回归问题)或投票(分类问题)的方式进行预测。随机森林就是一种基于Bagging思想的集成学习算法,它使用决策树作为基分类器,并通过对特征的随机选择进一步增加模型的多样性。由于Bagging的平行结构,随机森林可以有效处理大规模数据,具有较好的预测性能和计算效率。3、为了考察一种新的教学方法对学生英语成绩的影响,某学校进行了调查,共得到400个样本数据。数据表中GRADE为标签,PSI、GPA、TUC为特征。GRADE为分类数据,取1表示学习成绩提高,0表示学习成绩没有提高;
红楼之剑天外来 仙子不想理你 苟在修仙世界当反派 刚成仙神,子孙求我登基 回到霍格沃茨的古代巫师 末世:战姬指挥官 终于联系上地球,你说不要回答? 综漫:从杀手皇后开始 我有个死要钱的系统 不当舔狗后,校花哭问为什么! 重回八零,俏媳妇改造废物老公 带着原神祈愿系统穿越到诡异世界 斗罗:封号琴魔,这个杀手有点冷 快穿:病美人仙君又拿白月光剧本 归零:云海梦境,山海有灵 让你当好圣孙,你养一群女妖? 推理虽然有用但真的很令人讨厌 四合院之罪恶克星 除了我,全家都穿越了 我这样进球,会伤害到你吗?
谢虞欢这辈子做的最疯狂的一件事就是在自己还是皇贵妃时在亲妹妹的洞房夜里睡了新郎。新帝登基,怀中抱着一个尚在襁褓中的孩子,她将是朕唯一的子嗣。群臣惶恐,皇上,万万不可啊。而孩子的生母却无人知晓。后来,帝王身边多了一个女子,传闻那女子疯癫无常。她在声色犬马的乱世步步为营,从少年将军到两朝为后。她的一生,堪称传奇小剧场月黑风高夜,正是撩人时。某女伸着纤纤玉指轻轻划过某帝的前襟,媚眼如丝,吐气如兰,皇上,臣妾不比奏折好看?某帝正襟危坐,凤眸微眯,怀孕了也不老实?夫君~某帝抱住某女往龙榻走去,今晚你上,我下。如果您喜欢丞相大人不好撩,别忘记分享给朋友...
谈了多年恋爱以为修成正果,没想到在民政局被放鸽子了。以为天要塌了,面前伸出一只手一起登记吗?两个从来没有交集过的陌生人一起登记结婚了。婚后的日子惊险又刺激,他妈说儿子,你们俩的成长轨迹完全不一样,是走不远的。她妈说女儿,他家看不上咱家,要不,算了吧?她问他要不要换个门当户对的?他说门当户对我说了算。如果您喜欢不晚刚刚好,别忘记分享给朋友...
不准早恋!不准和男生做朋友!不准坐公交车回家!不准不准!全都不准!面对他的霸道和猖狂,她怒林青生,你是管家公吗?管那么宽!他笑,妖治的瞳孔里满是调侃对,我是你的管家公。十年,她见证他从妖孽邪肆的少年蜕变成杀伐决断的豪门少爷。他有了婚约,有了使命。她想远离,他却将她压倒在床,笑容邪恶你想逃?问过我吗?某絮你已经有未婚妻了,你不该这样对我!某生欺身而下我喜欢的人,是你,一直都是!唔!狡黠的眸子闪了闪,她就这么被他吃干抹净了?想得美!如果您喜欢头号青梅,腹黑竹马深深宠,别忘记分享给朋友...
我是一个专攻麻将的老千,半自传作品,百分之90都是本人真实经历!主打一个真实!仅以个人经历奉劝大家,十赌十诈,十赌九输!本文中涉及大量麻将骗术描写,千术手法描写,请勿模仿!赌之人生终有尽头...
穿越无敌天下简介emspemsp关于穿越无敌天下一套至尊武侠系统,无限畅游金庸武侠江湖,打天下,撩小姐姐一个都不能少!...
老公,洗脚水给你端来了,下次打我的时候,能轻点吗?意外回到1988年,亿万富豪的他看着面前的女人一脸懵逼,边上,还有一个小女孩喊爸爸,求抱抱!...